东西问丨短评:为何越处于两岸关系低谷,越要疾呼民间交流?******
中新社北京12月30日电 题:为何越处于两岸关系低谷,越要疾呼民间交流?
中新社记者 杨程晨
2022年是“九二共识”达成30周年,也是两岸开启交流往来的第35年。这一年,台湾社会民心求变求新。“思”字在有关两岸关系的年度汉字评选中高票当选,其背后是同胞的异地相思,真挚寄望交流恢复、人员往来。
8月27日,2022年全球华侨华人促进中国和平统一大会在四川举行。中新社记者 韩海丹 摄台湾位于祖国东南,故称“登陆”发展为西进。两岸打破政治阻隔的民间往来始于1987年,台湾的大陆籍老兵返乡探亲的呼声得以实现。自此,海峡不再成为阻碍,两岸民众进入共振时间,交流合作逾趋热络,西进蔚然成风。及至后来两岸各领域融合发展不断深化。
一个“思”字,反映的是两岸民众对于局势的现实心境。
回首2022,在台湾“九合一”选举、佩洛西窜访以及台美频密勾连的背景下,台海局势暗潮汹涌,两岸关系多次面临风高浪急的挑战。针对外部干涉之举,大陆方面坚决反制,在政治、经济、外交、法律及军事方面强力震慑分裂及干涉势力。中共二十大所展现的反分裂、反干涉决心彰显人民意志。
即便受到民进党当局阻挠和新冠疫情的不利影响,两岸民众希望交流合作、和平发展的呼声从未减弱。无论从当前、还是长远看,大陆依旧是台湾发展最坚实的倚靠,大陆高质量发展的持续推进为两岸经贸往来提供了新机遇。台湾工商团体跨海赴交流、台湾民众至盼“小三通”彻底重启,基层期待互动的真实声音正在放大,被更多人听见。
道阻且长,行则将至。大陆方面坚定致力于促进两岸经济文化交流合作,深化两岸各领域融合发展,是为和平统一打造更广阔的民众基础,为两岸关系铺垫长久基石。两岸关系的前路仍有风浪、风险。即便如此,两岸交流、特别是民众之间的往来都不应中断。这是两岸主流民意的真实反映。
福建省漳州古城里的“台湾路”老街彰显漳台两地的历史渊源。龚雯 摄一则例证是,尽管近年两岸青年交流颇为不易,但台湾学生西进热情不减。通过交换生项目到大陆的台生活跃于两岸社交媒体上,客观展现大陆生活。他们对中新社记者说,将在大陆的经历视作难能可贵的人生“加分项”,“无论是回到台湾还是留在大陆,都是很好的参照和铺垫”。
待疫情阴霾逐渐散去,当务之急就是排除干扰、克服障碍,尽快恢复两岸民间各领域、全方位、深层次的交流往来。让两岸同胞在交流融合中看清事实、认清真相,越来越多、越来越深地投身于两岸融合发展的大潮。
12月2日,第十届海峡青年节“黄巷·两岸青年文化交流周”活动在福州市三坊七巷黄巷启幕,台湾台中市同期举行。吕明 摄所谓“相见情已深,未语可知心”,越是在有人离间同胞感情、煽动同胞敌对之时,越能看出两岸同胞骨肉天亲的可贵;越是处于两岸关系的低谷、险境,越需珍视交流,越要呼吁往来。
兄弟既翕,和乐且湛。血脉的连结是两岸关系相向而行最持续的动力。年度汉字评选寄托两岸民众的新年愿望,折射的是两岸同胞的共同期盼。(完)
我国空间新技术试验卫星第二批科学与技术成果发布****** 记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。 01 46.5nm极紫外成像仪获得我国首幅太阳过渡区图像 46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。 △图1 “创新X”首发星——空间新技术试验卫星(SATech-01) △图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供) △图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供) 02 高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴 由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。 国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。 △图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。 03 国产量子磁力仪首次空间应用并获得全球磁场图 由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。 △图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供) △图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供) △图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供) 04 空间载荷、平台新技术成果丰富 由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。 △图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供) 由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。 △图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供) 中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。 △图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果 国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。 “科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。” 2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。 作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。 (总台央视记者 帅俊全 褚尔嘉)
|